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Facing the challenge to construct nanoscale machines, it has been
noted that molecular motors stand out as essential components to
provide power to such systems.1 The diversity of fascinating
biological motors, such as the kinesin or myosin linear and ATP-
ase rotary motor systems,2 has been a source of inspiration for the
development of artificial molecular mechanical devices (such as
switches, shuttles, and muscles)3 and a variety of elegant rotor
systems.4 The sterically overcrowded alkenes prepared in our
laboratories provided the basis for a light-driven motor.5,6 Unidi-
rectional rotation is achieved by a combination of a photochemically
mediated cis-trans isomerization followed by an irreversible
thermal isomerization.6 The motor described here is based on the
second-generation light-driven unidirectional molecular motors1.7

A limitation of these molecular motors proved to be their low rotary
speed. A major goal of our molecular motor program is to
substantially lower the Gibbs energy of activation of the thermal
isomerization, the rate-determining step for the 360° rotation around
the central double bond in these overcrowded alkenes. Thus far,
all attempts to decrease the thermal isomerization barriers have
involved structural modifications in order to diminish steric
interactions around thefjord regionof the molecules. This has been
achieved by the introduction of smaller-sized atoms in1 at bridging
position X or using smaller rings appended to the central alkene.8

Herein we report a substantial electronic effect on the thermal
isomerization around the central double bond (the axis of rotation),
which results in a remarkable increase of the rate of thermal
isomerization. We designed a new second-generation motor (Figure
1), with an amine moiety in the upper half, the lone pair electrons
of which can be delocalized by direct conjugation with a ketone
functionality in the lower half of the molecule. This electronic
push-pull system was anticipated to generate a large polarizing
effect on the central olefinic bond9 evident from a resonance
structure with a single bond as the central axis of the rotor. The
N-Boc protecting group in2 (Figure 2), introduced for synthetic
reasons, was found to be essential for the stability of the motor
during the irradiation experiments.10 Synthesis of the overcrowded
alkenes2 and3 was achieved by diazo-thioketone coupling of the
upper and lower halves as a key step, followed by desulfurization
using triphenylphosphine.11 Racemiccis-3 and trans-3, with a
nonsymmetric lower half, were separated by column chromatog-
raphy on silica (hexane:EtOAc) 16:1), and the structure oftrans-3
was unequivocally assigned by single-crystal X-ray analysis (Figure
2).11,12Enantioresolution was achieved by CSP-HPLC (Chiralpak
AD, heptane:2-propanol) 90:10).13

The photoisomerization of (2′R)-(M)-2 was followed using UV/
vis and circular dichroism (CD) spectroscopy (Figure 3). A sample
of (2′R)-(M)-2 in n-hexane was irradiated at-10 °C using a high-
pressure Hg lamp (λ > 280 nm), resulting in the appearance of a
broad absorption around 450 nm in the UV/vis spectrum (showing
positive solvatochromism11,14) and a change in sign of the major

CD absorptions, indicative of the helix inversion of the molecule
to provide (2′R)-(P)-2.15 On the basis of the change in the CD
spectrum, a (2′R)-(M)-2:(2′R)-(P)-2 ratio of 35:65 was established
at the photostationary state16 (supported by1H NMR measurements
at -75 °C11).

Upon standing in the dark for 30 min at 20°C, the spectra
corresponding to the stable isomer (2′R)-(M)-2 were fully restored.
The kinetics and thermodynamic parameters of the thermal helix
inversion of (2′R)-(P)-2 to (2′R)-(M)-2 were determined by
monitoring the CD signal at 274 nm in the dark over a range of
temperatures:∆qG° ) 81.7 kJ‚mol-1 (∆qH° ) 72.1 kJ‚mol-1, ∆qS°
) -32.9 J‚mol-1‚K-1, t1/2(20 °C) ) 40 s).11

Motor molecule2 contains a symmetric lower half, and as such,
just one photochemical and one thermal isomerization step, each
accompanied by a helix inversion, convert the olefin to its initial
stable isomer. To be able to identify the four distinct steps that

Figure 1. (a) The second-generation light-driven molecular motor1 and
(b) the proposed push-pull electronic effect on the central olefin.

Figure 2. (a) New motors2 and3; (b) Pluto drawing of racemictrans-3
(one enantiomer shown; this structure does not express the absolute
stereochemistry of the molecule).

Figure 3. (a) UV/vis and (b) CD spectra (n-hexane) of stable (2′R)-(M)-2
(solid line) and the photostationary state mixture with (2′R)-(M)-2 and (2′R)-
(P)-2 (dotted line) after irradiation (λ > 280 nm).
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define a full 360° rotary cycle of the upper half with respect to the
lower half, as shown in Scheme 1, a methoxy substituent was
introduced, and the rotation cycle of olefin3 was followed with
low-temperature1H NMR spectroscopy.

Upon irradiation of a racemic mixture ofcis-3 (365 nm, 5 h,
-80 °C), new signals corresponding to the unstabletrans isomer
appeared.11 The signals for the methyl substituent (doublets at 0.06
and 0.19 ppm), which adopts an axial orientation in the stablecis-3
isomer, shift downfield (0.67 and 0.82 ppm) as a result of the
equatorial orientation which it adopts in this unstabletrans-3
isomer.17 Also, the signals for the methoxy group (singlets at 2.47
and 2.63 ppm) shifted to considerably lower field (2.92 and 3.22
ppm) due to thecis-to-trans isomerization. On standing for 30 min
at 20 °C in the dark, conversion of the unstabletrans-3 to the
expected stabletrans-3 isomer with an axial methyl group (0.13
and 0.18 ppm) was observed. Examination of the integrals reveals
that not all unstabletrans-3 is converted to stabletrans-3: notably,
20% is thermally converted back to stablecis-3. Similar experiments
starting with racemictrans-3 indicate a correspondingtrans-to-cis
isomerization.11

When the thermal and photoisomerizations of enantiomerically
pure 3 (cis and trans) were investigated with UV/vis and CD
spectroscopy, results similar to those found for2 were observed.11

The following activation parameters were determined:∆qG° ) 84.7
kJ‚mol-1 (∆qH° ) 67.4 kJ‚mol-1, ∆qS° ) -59.1 J‚mol-1‚K-1,
t1/2(20 °C) ) 124 s) for the conversion of unstable (2′R)-(P)-trans-3
to the stable isomers,∆qG° ) 85.1 kJ‚mol-1 (∆qH° ) 59.3
kJ‚mol-1, ∆qS° ) -88.1 J‚mol-1‚K-1, t1/2(20 °C) ) 173 s) for the
conversion of unstable (2′R)-(P)-cis-3 to the stable isomers.18

The new molecular motor is significantly faster than all previ-
ously described systems. The two photochemical and two thermal
isomerizations (Scheme 1) observed for3 by low-temperature CD
and1H NMR spectroscopy confirm the four-stage rotary cycle and
the unidirectionality of the 360° rotary motion for new motors2
and 3. While an N-Boc-protected amine has a smaller electron-
donating capability compared to that of theN-alkyl group initially
proposed, it is clearly still significant,19 giving greater single bond
character to the rotational axis in the unstable form.20,21 It should
be emphasized that the observation that the thermal steps do not
result in exclusively a “forward” helix inversion, but also involve
a 20% “backward”cis-trans isomerization, leaves the overall
unidirectionality intact, as steps 2 and 4 are strictly unidirectional.22

Compared to earlier generation motors,6-8 the increase in speed,
which allows for full rotation at 20°C at the scale of minutes instead

of hours, is a major advance and offers perspectives for future
applications of these light-driven motors.

Supporting Information Available: Synthetic procedures and the
experimental and analytical details, spectral and kinetic data, X-ray
structural information (PDF) and the crystallographic information file
(CIF). This material is available free of charge via the Internet at http://
pubs.acs.org.
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Scheme 1. Photochemical and Thermal Isomerizations for 3

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 127, NO. 50, 2005 17613


